Data Types and Serialization

Every Kafka Streams application must provide Serdes (Serializer/Deserializer) for the data types of record keys and record values (e.g. java.lang.String) to materialize the data when necessary. Operations that require such Serdes information include: stream(), table(), to(), repartition(), groupByKey(), groupBy().

You can provide Serdes by using either of these methods, but you must use at least one:

  • By setting default Serdes in the java.util.Properties config instance.
  • By specifying explicit Serdes when calling the appropriate API methods, thus overriding the defaults.

Table of Contents

Configuring Serdes

Serdes specified in the Streams configuration are used as the default in your Kafka Streams application. Because this config's default is null, you must either set a default Serde by using this configuration or pass in Serdes explicitly, as described below.

import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.StreamsConfig;

Properties settings = new Properties();
// Default serde for keys of data records (here: built-in serde for String type)
settings.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
// Default serde for values of data records (here: built-in serde for Long type)
settings.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.Long().getClass().getName());

Overriding default Serdes

You can also specify Serdes explicitly by passing them to the appropriate API methods, which overrides the default serde settings:

import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;

final Serde<String> stringSerde = Serdes.String();
final Serde<Long> longSerde = Serdes.Long();

// The stream userCountByRegion has type `String` for record keys (for region)
// and type `Long` for record values (for user counts).
KStream<String, Long> userCountByRegion = ...;
userCountByRegion.to("RegionCountsTopic", Produced.with(stringSerde, longSerde));

If you want to override serdes selectively, i.e., keep the defaults for some fields, then don’t specify the serde whenever you want to leverage the default settings:

import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;

// Use the default serializer for record keys (here: region as String) by not specifying the key serde,
// but override the default serializer for record values (here: userCount as Long).
final Serde<Long> longSerde = Serdes.Long();
KStream<String, Long> userCountByRegion = ...;
userCountByRegion.to("RegionCountsTopic", Produced.valueSerde(Serdes.Long()));

If some of your incoming records are corrupted or ill-formatted, they will cause the deserializer class to report an error. Since 1.0.x we have introduced an DeserializationExceptionHandler interface which allows you to customize how to handle such records. The customized implementation of the interface can be specified via the StreamsConfig. For more details, please feel free to read the Configuring a Streams Application section.

Available Serdes

Primitive and basic types

Apache Kafka includes several built-in serde implementations for Java primitives and basic types such as byte[] in its kafka-clients Maven artifact:

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>2.8.0</version>
</dependency>

This artifact provides the following serde implementations under the package org.apache.kafka.common.serialization, which you can leverage when e.g., defining default serializers in your Streams configuration.

Data type Serde
byte[] Serdes.ByteArray(), Serdes.Bytes() (see tip below)
ByteBuffer Serdes.ByteBuffer()
Double Serdes.Double()
Integer Serdes.Integer()
Long Serdes.Long()
String Serdes.String()
UUID Serdes.UUID()
Void Serdes.Void()
List Serdes.ListSerde()
Boolean Serdes.Boolean()

Tip

Bytes is a wrapper for Java’s byte[] (byte array) that supports proper equality and ordering semantics. You may want to consider using Bytes instead of byte[] in your applications.

JSON

The Kafka Streams code examples also include a basic serde implementation for JSON:

As shown in the example, you can use JSONSerdes inner classes Serdes.serdeFrom(<serializerInstance>, <deserializerInstance>) to construct JSON compatible serializers and deserializers.

Implementing custom Serdes

If you need to implement custom Serdes, your best starting point is to take a look at the source code references of existing Serdes (see previous section). Typically, your workflow will be similar to:

  1. Write a serializer for your data type T by implementing org.apache.kafka.common.serialization.Serializer.
  2. Write a deserializer for T by implementing org.apache.kafka.common.serialization.Deserializer.
  3. Write a serde for T by implementing org.apache.kafka.common.serialization.Serde, which you either do manually (see existing Serdes in the previous section) or by leveraging helper functions in Serdes such as Serdes.serdeFrom(Serializer<T>, Deserializer<T>). Note that you will need to implement your own class (that has no generic types) if you want to use your custom serde in the configuration provided to KafkaStreams. If your serde class has generic types or you use Serdes.serdeFrom(Serializer<T>, Deserializer<T>), you can pass your serde only via methods calls (for example builder.stream("topicName", Consumed.with(...))).

Kafka Streams DSL for Scala Implicit Serdes

When using the Kafka Streams DSL for Scala you're not required to configure a default Serdes. In fact, it's not supported. Serdes are instead provided implicitly by default implementations for common primitive datatypes. See the Implicit Serdes and User-Defined Serdes sections in the DSL API documentation for details